

WE FOCUS ON UPFRONT CARBON AS THEY ARE MOST LIKELY THE MAJORITY OF EMBODIED CARBON IMPACTS ASSOCIATED WITH A PROJECT.

INCLUDED ARE PRODUCT STAGES A1-A3, PLUS TRANSPORT A4 TO WALES AND MATERIAL WASTE FROM CONSTRUCTION INSTALLATION ASW. EXCLUDED ARE EMISSIONS DUE TO ENERGY USAGE ON SITE DURING CONSTRUCTION INSTALLATION ASA.

FLOORS AND FOUNDATIONS

<u>Estimation</u> of upfront embodied carbon impacts.

Calculated per m² of horizontal projection area (or footprint area including external walls) to a common U-value of 0.13W/m²K. Benign soil conditions have been assumed for all foundations.

Figures include floor build-up as well as foundation with an assumed perimeter ratio of xxx. Includes masonry below DPC and an allowance for reuse of plywood formwork by reducing related impacts by 50%.

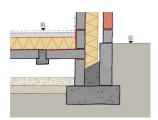
Excludes floor finishes, damp-proof membranes, any further enabling works, below-ground drainage etc.

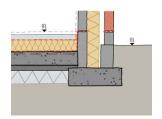
Based on a notional detached 2-storey 3B house of 80m2

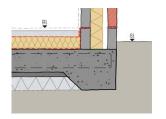
FOUNDATIONS ARE ONE OF THE BIGGEST CONTRIBUTORS TO EMBODIED CARBON, BUT IT IS DIFFICULT TO MAKE DIRECT COMPARISONS BETWEEN OPTIONS BECAUSE THEY ARE CLOSELY LINKED TO THE FLOOR AND WALL CONSTRUCTIONS.

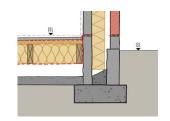
SITE SPECIFIC SOIL CONDITIONS OR STRUCTURAL REQUIREMENTS CAN ALSO DICTATE THE RANGE OF AVAILABLE SOLUTIONS AND THEIR RELATIVE CARBON IMPACTS.

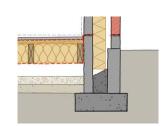
EMBODIED CARBON IMPACTS


FLOORS AND FOUNDATIONS

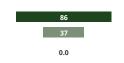

Beam and Block **Strip Foundations** **Ground-bearing Slab** Strip Foundations


Ground-bearing Slab Raft Foundations

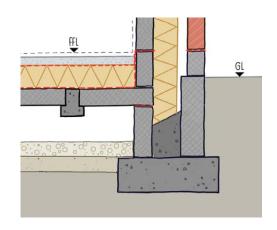

Suspended Timber Floor Strip Foundations Concrete Solum Capping


Suspended Timber Floor **Strip Foundations** Sand and Gravel Solum Capping

Estimated **Upfront Carbon** Impacts per m2 footprint



Floor structure Foundations Floor structure biogenic stored


50

kgCO2e/m²

EMBODIED CARBON: EXAMPLE OF FLOOR BUILD UPS

 $0.13W/m^{2}K$

Beam and Block Suspended Pre-cast Concrete Floor and Strip Foundations

(25mm floor finish excluded)

60mm sand cement screed

140mm PIR insulation

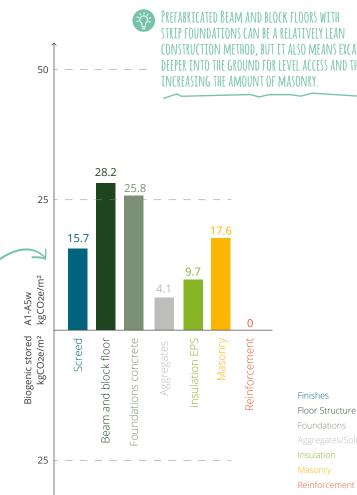
100/150mm pre-cast beam and block floor average beam spacing 413mm

min. 150mm ventilated void

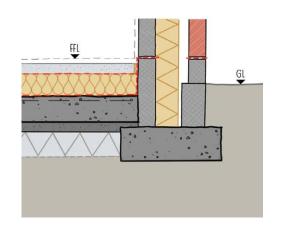
100mm gravel and sand solum capping

(Unformed foundation edges; DPM not included)

MADE FROM CEMENT, SCREED HAS A SIMILAR CARBON IMPACT TO CONCRETE!


Combined upfront embodied carbon per m²

A1-A5w carbon impact


Biogenic carbon stored

EMBODIED CARBON: EXAMPLE OF FLOOR BUILD UPS

0.13W/m²K

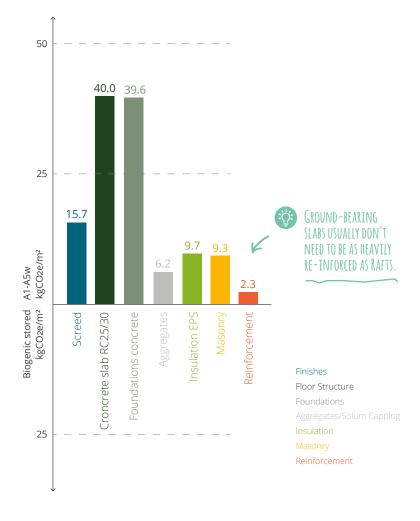
Ground Bearing Concrete Slab with Strip Foundations

(25mm floor finish excluded)

60mm sand cement screed

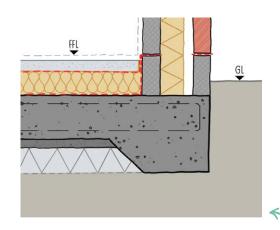
140mm PIR insulation

150mm re-inforced concrete raft RC32/40 with A193 mesh


50mm concrete blinding

150mm type 1 hardcore

(Unformed slab edges; DPM not included)


Combined upfront embodied carbon per m²

0.13W/m²K

Ground Bearing Concrete Slab with Raft Foundation

(25mm floor finish excluded)

60mm sand cement screed

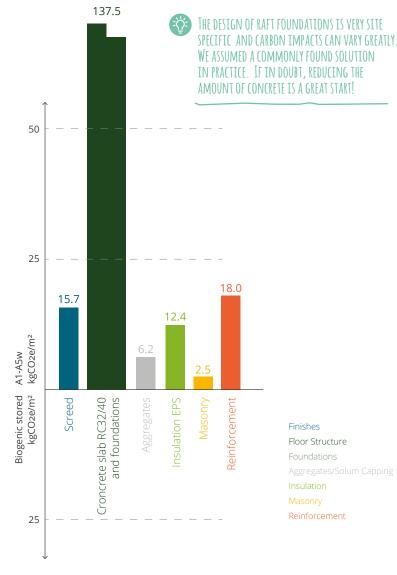
140mm PIR insulation

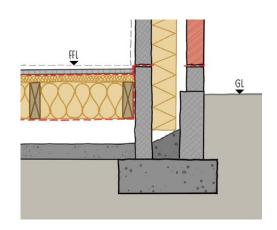
250mm re-inforced concrete raft RC32/40

with H12 bars @ 200 top and bottom

50mm concrete blinding

150mm type 1 hardcore


(Includes formwork at slab edge; DPM not included)


ANOTHER POINT TO THINK ABOUT ARE THERMAL BRIDGES, WHICH MAY REQUIRE ADDITIONAL INSULATION BELOW GROUND AND FURTHER INCREASE CARBON IMPACTS.

Combined upfront embodied carbon per m²

Suspended Timber Floor with Strip Foundations and Concrete Solum Capping

(25mm floor finish excluded)

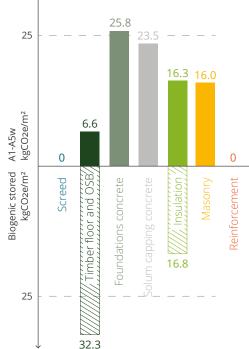
20mm plywood base

45mm C16 timber battens @600ctrs with low density woodfibre batt insulation in between

245mm x 45mm C16 timber joists @600mmwith low density wood fibre insulation between

min. 150mm ventilated void

100mm concrete solum capping


(Unformed foundation edges; DPM not included)

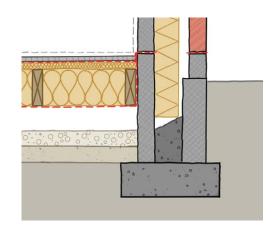
SCREWS OR STONE.

SUSPENDED TIMBER FLOORS HAVE A MUCH LOWER IS IMPORTANT, ESPECIALLY IN CONTUNCTION WITH TIMBER FRAME WALL CONSTRUCTIONS.

Finishes Floor Structure

Reinforcement

Combined upfront embodied carbon per m²



A1-A5w carbon impact

Biogenic carbon stored

Suspended Timber Floor with Strip Foundations and Sand & Gravel Solum Capping

(25mm floor finish excluded)

20mm plywood base

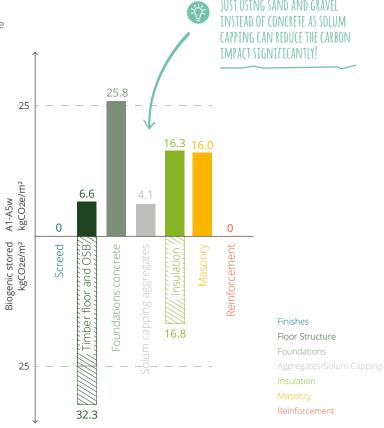
45mm C16 timber battens @600ctrs with low density woodfibre batt insulation in between

 $245 \text{mm} \times 45 \text{mm} \text{ C16 timber joists } @600 \text{mmwith low density wood fibre insulation between}$

min. 150mm ventilated void

100mm gravel and 50mm sand solum capping

(Unformed foundation edges; DPM not included)


Combined upfront embodied carbon per m²

A1-A5w carbon impact

Biogenic carbon stored

