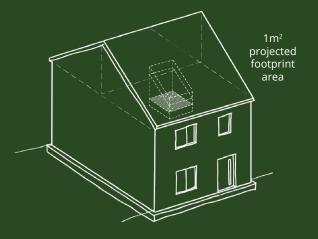


WE FOCUS ON UPFRONT CARBON AS THEY ARE MOST LIKELY THE MAJORITY OF EMBODIED CARBON IMPACTS ASSOCIATED WITH A PROJECT.

INCLUDED ARE PRODUCT STAGES A1-A3, PLUS TRANSPORT A4 TO WALES AND MATERIAL WASTE FROM CONSTRUCTION INSTALLATION ASW. EXCLUDED ARE EMISSIONS DUE TO ENERGY USAGE ON SITE DURING CONSTRUCTION INSTALLATION ASA.

ROOFS

<u>Estimation</u> of upfront embodied carbon impacts.


Calculated per m² of horizontal projection area (or footprint area to be covered with a roof including external walls) to a common U-value of 0.11W/m²K.

Includes timber trusses or rafters, insulation, internal lining, membranes and roof finish.

Excludes fascias, sole plates, rainwater goods.

Medium to large format concrete tiles have been assumed for all options. An allowance has been made for fixings.

The roof pitch has been assumed at 30°, with a structural span of 8m for trusses.

Based on a notional detached 2-storey 3B house of 80m2

ALL FIGURES ARE SENSITIVE TO ASSUMPTIONS AND EXCLUSIONS, WHICH IS WHY IT IS IMPORTANT TO CRITICALLY REVIEW EVERY FIGURE AND UNDERSTAND ITS PARAMETERS AND SYSTEM BOUNDARIES!

A KEY INFORMATION IS THE FUNCTIONAL UNIT AS THE BASIS FOR COMPARISONS - HERE WE HAVE TAKEN I SQUARE METER OF PROJECTED FOOTPRINT AREA IN ORDER TO DIRECTLY COMPARE THE IMPACT OF THE DIFFERENT ROOF CONSTRUCTIONS AND BUILD-UPS AGAINST EACH OTHER.

EMBODIED CARBON IMPACTS

ROOFS

Pitched Trussed Cold Roof Mineral Wool

4.5

10.2

5.6

45.0

0.0

4.5

1.2

Biogenic

kgCO2e/m²

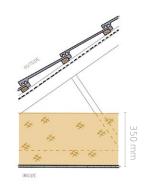
Estimated Upfront Carbon **Impacts** 35 per m² of kgCO2e/m² projected A1-A5w upfront carbon footprint area

Internal lining

Roof structure

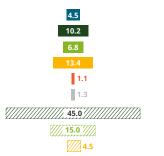
Insulation

Membranes

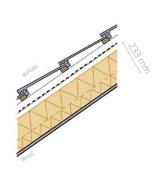

Roof structure biogenic stored

Insulation biogenic stored

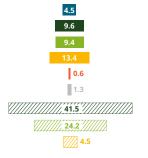
Cladding biogenic stored (roofing battens)



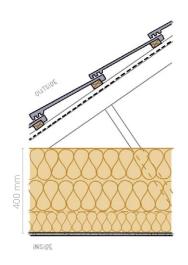
Pitched Trussed Cold Roof Cellulose



Pitched Warm Roof PIR between Rafters



Pitched Warm Roof Cellulose between I-Beams



Woodknowledge Wales

EMBODIED CARBON: EXAMPLE OF ROOF BUILD UPS

0.11W/m²K

Pitched Trussed Cold Roof - Mineral Wool at Loft Level

Medium to large format interlocking concrete roof tiles

25mm roofing battens

25mm counter battens

Roofing membrane

Trussed rafter (assumed 8m span) @ 600mm ctrs

400mm mineral wool batts (11kg/m3) above and between joists

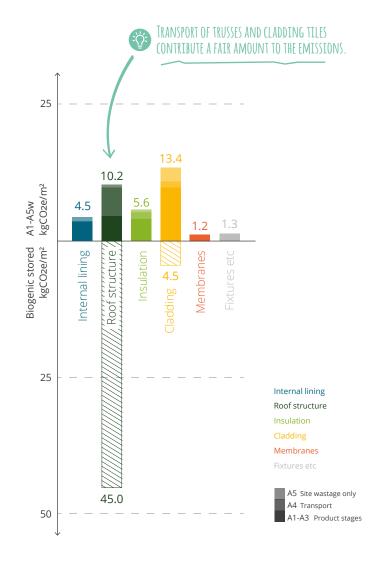
Vapour control layer

15mm plasterboard

3mm plaster skim

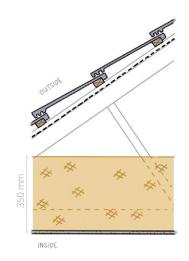
LOW DENSITY MINERAL WOOL IS ACTUALLY VERY GOOD IN TERMS OF UPFRONT EMBODIED CARBON! THIS IS NOT THE CASE FOR HIGHER DENSITY RAINSCREEN SLABS.

Combined upfront embodied carbon per m²



A1-A5w carbon impact

COMMON ROOF STRUCTURES SU AS TRUSSES AND BATTENS MADE FROM TIMBER STORE CARBON.


Biogenic carbon stored

EMBODIED CARBON: EXAMPLE OF ROOF BUILD UPS

0.11W/m²K

Pitched Trussed Cold Roof - Cellulose at Loft Level

Medium to large format interlocking concrete roof tiles

25mm roofing battens

25mm counter battens

Roofing membrane

Trussed rafters (assumed 8m span) @ 600mm ctrs

350mm cellulose insulation above and between joists (40kg/m3)

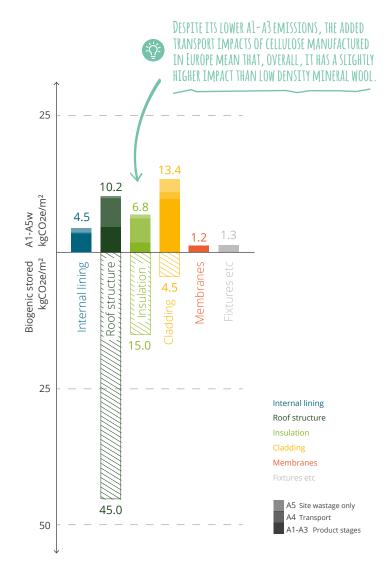
Vapour control layer

15mm plasterboard

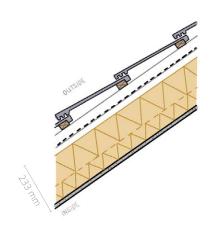
3mm plaster skim

(BUT ALSO STORAGE) PER SQUARE METER.

Combined upfront embodied carbon per m²



A1-A5w carbon impact



Pitched Warm Roof - PIR between Joists

Medium to large format interlocking concrete roof tiles

25mm roofing battens

25mm counter battens

Roofing membrane

190mm timber rafters (assumed 4m horizontal span) @ 400mm ctrs

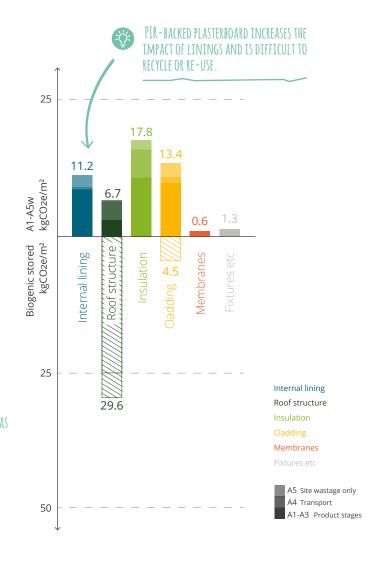
140mm PIR between joists

62.5mm insulated plasterboard

3mm plaster skim

THERE ARE WIDER CONSIDERATIONS WHEN CHOOSING BETWEEN COLD AND WARM ROOFS, INCLUDING USABLE SPACE AND AREA, STRUCTURE, PREFABRICATION, CONTEXT, MEP LOCATION ETC!

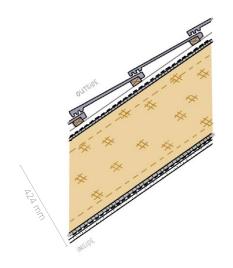
Combined upfront embodied carbon per m²



34.1 kgC02e/m²

THE SPACING AND SIZE OF ROOF TILES, AS WELL AS THE ROOF PITCH, MAKE A DIFFERENCE!

A1-A5w carbon impact


Biogenic carbon stored

Woodknowledge Wales

Page 5

Pitched Warm Roof - Cellulose between I-Beams

Medium to large format interlocking concrete roof tiles

25mm roofing battens

25mm counter battens

Roofing membrane

11mm OSB/3 sheathing board

360mm blown cellulose insulation (50kg/m3) between I-joists (assumed 4m horizontal span) @ 600mm ctrs

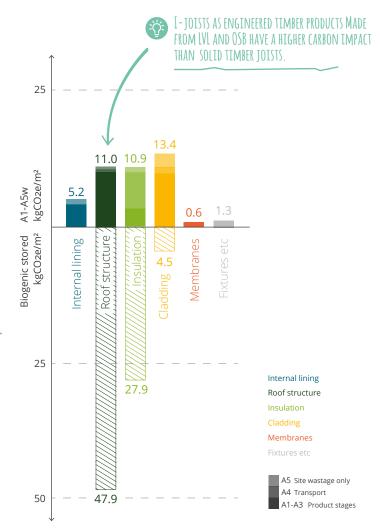
11mm OSB/3 sheathing board

Vapour control layer

12.5mm plasterboard

3mm plaster skim

BUT IT ALSO HAS THE THICKEST BUILD-UP


Combined upfront embodied carbon per m²

A1-A5w carbon impact

Biogenic carbon stored

